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Indoor Navigation

Vision:

Illustration: Project u-GIS: Indoor Spatial Awareness, Korea
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Applications for Indoor Navigation

Emergency and Disaster Management
escape route planning, simulation of evacuations

guidance of rescue personell in buildings

(Activity) Tracking of persons (e.g. rescue personnel) 
and objects (e.g. goods, material, or robots)

Navigation in public buildings like airports, museums, 
administrations, shopping malls

(check in) counters, exits, toilets, police station, exhibits, offices

generally: Location Based Services
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Navigation

Navigation comprises 

Determination of position and (usually) orientation
communication of position needs geoinformation (typ. maps)

Addressing and Route Planning
requires geoinformation about the navigable space

requires addressing / georeferencing schema (naming of 
locations): coordinate reference systems and/or textual 

Route Tracking (Homing)
alignment actual position target position

motion control to reduce the distance, i.e. keeping on track

communication of navigation commands
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What does a navigation system needs?

Localization method / technology

Geoinformation about the navigable space
navigable route sections

list of localities (named places and their coordinates)

Spatial reference systems (nowadays typically two!)
1. spatial reference system of the localization method

(often locale or world coordinate system)

2. natural spatial reference system of the user
(for naming of start and end points; often not a coordinate 
system but e.g. addresses, Points of Interest)

Methods for position and route communication
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Robot navigation

Route planning
geometric route planning, i.e. the exact 
trajectory of the robot has to be 
computed
requires topological and geometric
information about the navigable space, 
at least 2D floor plans / footprints

Localization 
typically uses (laser / ultrasonic) range 
finders or photogrammetric / computer 
vision methods for localization
often Simultaneous Localisation and 
Mapping (SLAM) is applied; 
nowadays 3D models are used Picture:

CS Dept. III
Univ. of Bonn
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Robot navigation

Route planning
geometric route planning, i.e. the exact 
trajectory of the robot has to be 
computed
requires topological and geometric
information about the navigable space, 
at least 2D floor plans / footprints

Localization 
typically uses (laser / ultrasonic) range 
finders or photogrammetric / computer 
vision methods for localization
often Simultaneous Localisation and 
Mapping (SLAM) is applied; 
nowadays 3D models are used Picture:

CS Dept. III
Univ. of Bonn

Image: © Microdrones

Mode of Locomotion: Flying!
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Geodata for Indoor Navigation



29. 9. 20099 T. H. Kolbe  – IndoorML for Indoor Navigation

Department of Geoinformation Science

Problems of Indoor Navigation

Different, varying localisation methods
nevertheless: sensors are different, 

but most have comparable spatial characteristics (visibility area, 
coverage area, signal propagation).

Absolute position can be determined, if the locality of a 
sensor or sender and its covered area is known

uncertainty is equal to the size of the respective area  

Route network and addressing principle for navigation 
targets required (coordinates are unsuited)

Wanted: space model for localisation + route planning
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The Project „Indoor Spatial Awareness“

Indoor Navigation, Simulations, Applications
funded by the ministry of transport of South Korea

Partners:
Ki-Joune Li, Pusan National Univ., Korea
Jyeong Lee, Univ. of Seoul, Korea
Mike Worboys, Univ. of Maine, USA
Christian S. Jensen, Aalborg Univ., Denmark

Research goals at TU Berlin: 
Creation of a space model that integrates the notions of Euclidean 
space and cellular space as well as space + activity
Development of a data model comprising both 3D topography 
(of  buildings) and the spatial characteristics of all sensors
Mapping to an exchange format: IndoorML
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Modeling of Navigable Indoor Spaces 

Semantic 3D city and building 
models provide (nowadays) 

the geometry and

a thematic differentiation of the 
indoor areas (at least 
separation in building parts, 
storeys and rooms)

International standards 
CityGML and IFC

Thematic differentiation already 
suitable for addressing, route 
descriptions and route tracking 
(homing)

e.g. by room numbers
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Representation of spaces within buildings

Interiors will be represented in 
Euclidean space as volumes
(3D IR³) by using the 
boundary representation:

Euclidean space is a 
metric space and induces a 
natural topology. 

Adjacency;
Interior, exterior, boundary

Geometrical-topological 
modeling of volumes by 
cell complexes

3-cell: Solid

2-cell: Face

1-cell: edge

0-cell: node
⊂

⊂
⊂
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Poincaré Duality (Algebraic Topology)

For a compact, orientiented manifold the i-th homology group 
is isomorphic to the (n-i)-th cohomology.

Mapping of i-dimensional cells within cell complexes 
in primal space onto (n-i) cells in dual space
Isomorphism preserves topological properties

DualityPoincaré

Primal Space:
Cell complex consisting of two 
volumes (e.g. rooms within building)
and their bounding
faces, edges, and nodes

Dual Space:
Volume (3D) mapped onto node (0D),
face (2D) onto edge (1D)

Example:
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Example  [from Lee 2004]

3D Building Model
Primal Space

3D Connectivity Graph
Dual Space

3D NRS is a topologic structure with (geometric) embedding in IR³
facilitates determination of shortest paths in the network

3D Node-relation-structure (NRS)
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Structured Space Model

The size of 
the cells

determines
ambiguity of 
the absolute 

position

P
oincaré-D

uality

Node-Relation-Structure
[Lee 2004]
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Multilayered Space Model

Physical
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State
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Topographic 
Space model

Further Layer
Sensor 
Space model

Primal 
space

Dual 
space



29. 9. 200917 T. H. Kolbe  – IndoorML for Indoor Navigation

Department of Geoinformation Science

Multilayered Space Model

1st layer: Topographic space model
modeling of the building’s structure (topography)
Primal space: geometric-topological model
Dual space: network for route planning

2nd layer: Sensor space model
Modeling of sensor / transmitter structure
Primal space: coverage of sensor areas
Dual space: transition between sensor areas

Further layers: i.e. further sensor space model
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1st Layer: Topographic Space

3D building
models

Events:
movement into 
an another room

GM_Solid TP_Solid
ISO

Dual graph

Primal
space

Dual
space

TopologyGeometry in IR³

19107 

ISO 19107 

Euclidean space 
embedding of NRS
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Example for Topographic Space (I)

Rooms and their adjacencies resp. state transition graph 
(presence in a room and changes of rooms)

Planned route (e.g. an escape route) Traced route

Primal space, geometric model: Dual space, topological model:
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Example for Topographic Space (II)

Topographic space
primal space
as 3D Solids
Rooms are connected via  

doors

Topographic space
dual space
as connectivity graph
“Rooms” are connected 

via edges
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Dual to primal connectionDual to primal connection

Example for Topographic Space (II)

Rooms and their adjacencies resp. state transition graph 
(presence in a room and changes of rooms)

Traced route

State-transition diagram Affected spaces 
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Relation of Space and Event

If spaces are represented in a non-overlapping way 
within a space model, then:

a subject or object must be exactly in one cell

the space model dual graph describes a state 
transition diagram

Node ≅ area (e.g. room within a building) in primal space; 
at the same time state of a subject or object with respect to 
space occupation

edge ≅ connections, adjacencies (e.g. doors, passages) in 
primal space; at the same time event indicating movement / 
transition from one area into another
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2nd Layer: Sensor Space

i.e. Wi-Fi
coverage
area

events:
change of 
coverage area 
or signal strength

TP_SolidsGM_Solids

ISO 19107
Primal
space

Dual
space

TopologyGeometry in IR³

Primal
space

Dual
space

TopologyGeometry in IR³

ISO 19107

Dual graphEuclidean space 
embedding of NRS
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Examples for Sensor Space Model

Wi-Fi

RFID
Scanner
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Outer

Wi-Fi or RFID- areas without overlapping

overlapping Wi-Fi reception areas

Outer

Examples for Sensor Space Model
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Combination of Space Models (I)
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Combination of Space Models (I)
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Combination of Space Models (II)
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Connection of dual graphs of several layer in 
one multi-layered graph

the dashed edges express which
states can be mutually active within
the different space models 
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Tracking /
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Route planning
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Formal Background of the Multi-Layered Graph

Definition using topology: 
Partitioning of nodes according to their 
membership to the different space 
models

n space models n sets of nodes

Edges within each partition express 
topologic adjacency (3D cells have a  
common face)

Edges between nodes from different 
partitions express topological overlaps 
(intersection of the interiors of the 
corresponding cells is not empty)
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Example for a Multi-Layered Graph



29. 9. 200931 T. H. Kolbe  – IndoorML for Indoor Navigation

Department of Geoinformation Science

Joint State

Every dual graph of a space model describes a state 
transition diagram 

If the partition of the space is non-overlapping, only one state is 
active at one point in time

The existing joint states of several space models are 
represented in just one multi-layered graph

The joint state of navigation is given by the 
simultaneously active states of all space models.

Combinations are constrained by the edges of the 
multi-layered graph.
Every clique of size n, where each node comes from a different 
space model, describes a possible joint state of navigation.
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Example for Joint State

Outer

Rooms and their adjacencies 
within the topographic space model

RFID scanner coverage areas and their  
adjacencies within the sensor space model Joint state
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2008-08-11

Example for Using the Joint State

multilayered model (primal)
topographic space (blue)
additional cell space (cyan)
lower security zones (green)
high security zones (orange)
Wi-Fi transmitter (light red)
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2008-08-11

Example for Using the Joint State

multilayered model (primal)
topographic space (blue)
additional cell space (cyan)
lower security zones (green)
high security zones (orange)
Wi-Fi transmitter (light red)
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2008-08-11

Example for Using the Joint State

multilayered model (primal)
topographic space (blue)
additional cell space (cyan)
lower security zones (green)
high security zones (orange)
Wi-Fi transmitter (light red)

multilayered model (dual)
topographic space (blue)
additional cell space (cyan)
lower security zones (green)
high security zones (orange)
Wi-Fi transmitter (light red)
additional: joint states between 

the layer
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2008-08-11

Example for Using the Joint State

multilayered model (primal)
topographic space (blue)
additional cell space (cyan)
lower security zones (green)
high security zones (orange)
Wi-Fi transmitter (light red)

multilayered model (dual)
topographic space (blue)
additional cell space (cyan)
lower security zones (green)
high security zones (orange)
Wi-Fi transmitter (light red)
additional: joint states between 

the layer
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Position Determination using the Joint State

A
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Outer

Outer
R I

R II

1 2 3

5
6

4

1 2 3

5
6

4 A B CAB BCA B CAB BC
R1 R2

The joint state of navigation is given by the synchronously 
active states of all space models.

R I, State 6 and State A constitute a clique of 
Inter-Space connections, i.e. they overlap in primal space
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Position Determination using the Joint State
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R II
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5
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R1 R2

The joint state of navigation is given by the synchronously 
active states of all space models.

R I, State 6 and State A constitute a clique of 
Inter-Space connections, i.e. they overlap in primal space6

A
RI

Overlaid spaces

actual position area 
in topogr. Space

Intersecting geometries
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Summary of Multilayered Space Model

The multilayered space model allows for distinct spatial 
decompositions with respect to different semantics

e.g. topography, sensors

changes (e.g. modifications, installation of new sensors) within one 
space model do not influence data within other space models

The multilayered graph enables the propagation of 
events between several space models

i.e. when moving into an another sensor area, the possible 
locations in topographic space can be constrained

the joint state reduces the uncertainty of the absolute 
position of an object or subject
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Context of Navigation

Mode of LocomotionMode of Locomotion

Logical contextsLogical contextsLocalization Localization 
techniques and techniques and 

infrastructureinfrastructure

representing prerepresenting pre--
knowledge or knowledge or 
navigation constraintsnavigation constraints

Walking, Flying, Walking, Flying, 
Driving (robot, wheel chair)Driving (robot, wheel chair)

WiWi--Fi, RFID, Fi, RFID, 
Noise Sensors, Noise Sensors, 
Cell PhonesCell Phones

three main factors constitute the context of navigationthree main factors constitute the context of navigation

Supporting Supporting 
contexts using a contexts using a 

layer for each layer for each 
within the within the 

multilayered modelmultilayered model
im

pa
ct

im
pa

ct

impactimpact

im
pact

im
pact
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Mapping Context to the Multilayered Graph

Spaces within a space model may be subdivided due to specific 
considerations

e.g. by the mode of locomotion
each specific consideration or context leads to an new layer within 
the model
… but they are not independent of the higher level layer
therefore the inter-space connections can be topological qualified 
as contains or equals

Toplevel layer

Is-A Is-A

Subspaces
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Subspacing wrt. Mode of Locomotion 

staircase

Use of Staircase and a part of the floor is prohibited in case of a wheel chair driver

staircase

equals

contains

contains
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Context Handling for Navigation Scenarios

DB
Storage of n-
partite Graph

DB
Storage of n-
partite Graph
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Context Handling for Navigation Scenarios

DB
Storage of n-
partite Graph

DB
Storage of n-
partite Graph

Selection

Determination 
of  possible
Joint states

Subsetting of the
n‐partite graph

4 3

1
2

A BAB

R1 R2
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IndoorML - Data Model

<<Feature>>
n-partite-Graph

-layerName : string
-layerClassifier : layerClassifier

<<Feature>>
SpaceLayer

+comment : string
-typeOfTopoExpression : TopoExpression

<<Feature>>
InterSpaceConnection

<<Feature>>
Transition

<<Feature>>
State

<<Topology>>
TP_Edge

<<Topology>>
TP_Node

<<Geometry>>
GM_Curve

<<Geometry>>
GM_Point

<<Topology>>
TP_Face

<<Topology>>
TP_DirectedFace

<<Topology>>
TP_Solid

<<Geometry>>
GM_OrientableSurface

<<Geometry>>
GM_Solid

<<Feature>>
Space

<<Feature>>
SpaceBoundary

Poincare´- duality

Geometry Topology

primal space

dual space

<<Feature>>
TypeOfRelation

+topographic
+sensor
+logical
+unknown

<<enumeration>>
layerClassifier +contains

+equals
+overlap
+unknown

<<enumeration>>
TopoExpression

0..1

0..1

topoEdge

0..*

1..2 spaceBoundary

space

1..*

0..*

1

0..1

1

0..1

1

21..*

1

1

1

0

1..*

2

interSpaceConnection

state

1

1

0..*

1

0..1 1

0..*

1

1

0..*

topoNode

1..*
1

2

1..*

state

transition

0..1

1

*

*

1

0..1

1

1

transition

spaceBoundary

1

1

state

space

2 1
spaceBoundary

space

realtionTo

topoFace

topoSolid

boundedBy

realization

realization

boundedBy

realization

realization

topoEdge

state

transition

interSpaceConnectionMember

spaceLayerMember

based on the ISO 191xx standards family and mapped to GML
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IndoorML

<<Feature>>
n-partite-Graph

-layerName : string
-layerClassifier : layerClassifier

<<Feature>>
SpaceLayer

+comment : string
-typeOfTopoExpression : TopoExpression

<<Feature>>
InterSpaceConnection

<<Feature>>
Transition

<<Feature>>
State

<<Topology>>
TP_Edge

<<Topology>>
TP_Node

<<Geometry>>
GM_Curve

<<Geometry>>
GM_Point

<<Topology>>
TP_Face

<<Topology>>
TP_DirectedFace

<<Topology>>
TP_Solid

<<Geometry>>
GM_OrientableSurface

<<Geometry>>
GM_Solid

<<Feature>>
Space

<<Feature>>
SpaceBoundary

Poincare´- duality

Geometry Topology

primal space

dual space

<<Feature>>
TypeOfRelation

+topographic
+sensor
+logical
+unknown

<<enumeration>>
layerClassifier +contains

+equals
+overlap
+unknown

<<enumeration>>
TopoExpression

0..1

0..1

topoEdge

0..*

1..2 spaceBoundary

space

1..*

0..*

1

0..1

1

0..1

1

21..*

1

1

1

0

1..*

2

interSpaceConnection

state

1

1

0..*

1

0..1 1

0..*

1

1

0..*

topoNode

1..*
1

2

1..*

state

transition

0..1

1

*

*

1

0..1

1

1

transition

spaceBoundary

1

1

state

space

2 1
spaceBoundary

space

realtionTo

topoFace

topoSolid

boundedBy

realization

realization

boundedBy

realization

realization

topoEdge

state

transition

interSpaceConnectionMember

spaceLayerMember
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Linking IndoorML with CityGML
CityGML

IFC

Maybe other …

<<Feature>>
n-partite-Graph

-layerName : string
-layerClassifier : layerClassifier

<<Feature>>
SpaceLayer

+comment : string
-typeOfTopoExpression : TopoExpression

<<Feature>>
InterSpaceConnection

<<Feature>>
Transition

<<Feature>>
State

<<Topology>>
TP_Edge

<<Topology>>
TP_Node

<<Geometry>>
GM_Curve

<<Geometry>>
GM_Point

<<Topology>>
TP_Face

<<Topology>>
TP_DirectedFace

<<Topology>>
TP_Solid

<<Geometry>>
GM_OrientableSurface

<<Geometry>>
GM_Solid

<<Feature>>
Space

<<Feature>>
SpaceBoundary

Poincare´- duality

Geometry Topology

primal space

dual space

<<Feature>>
TypeOfRelation

+topographic
+sensor
+logical
+unknown

<<enumeration>>
layerClassifier +contains

+equals
+overlap
+unknown

<<enumeration>>
TopoExpression

0..1

0..1

topoEdge

0..*

1..2 spaceBoundary

space

1..*

0..*

1

0..1

1

0..1

1

21..*

1

1

1

0

1..*

2

interSpaceConnection

state

1

1

0..*

1

0..1 1

0..*

1

1

0..*

topoNode

1..*
1

2

1..*

state

transition

0..1

1

*

*

1

0..1

1

1

transition

spaceBoundary

1

1

state

space

2 1
spaceBoundary

space

realtionTo

topoFace

topoSolid

boundedBy

realization

realization

boundedBy

realization

realization

topoEdge

state

transition

interSpaceConnectionMember

spaceLayerMember
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Example 

Low Security
Zone

High Security Zone

Topographic
Subspaces

Main Topographic 
Layer

RFID

WiFi
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Example (II)

OUTER

High security zone

Intra-space connections must 
have a topological and may have 

a geometrical Embedding!

Low security zone

<transition>
<Transition gml:id="Transition_5">

<topoEdge>
<gml:Edge>

<gml:directedNode xlink:href="#Node_1"/>
<gml:directedNode xlink:href="#OuterNode"/>
<gml:curveProperty>
<gml:LineString>

<gml:posList>
1009.28 1004.19 29.8011 1008.31 1004.29 29.7971 

1007.49 1004.3 29.7936 1006.82 1004.23 29.7908 
1006.3 1004.08 29.7886 1005.94 1003.85 29.7869 
1005.67 1003.15 29.7856 1005.77 1002.68 29.7858
1006.02 1002.12 29.7866 1006.42 1001.49 29.7881 
1006.97 1000.78 29.7901 1007.68 999.986 29.7928
1008.54 999.112 29.7961 1009.55 998.159  29.8 

</gml:posList>
</gml:LineString>

</gml:curveProperty>
</gml:Edge> 

</topoEdge>
</Transition>

</transition>
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Summary and Conclusions

Indoor navigation requires 3D models and 3D data
for route planning and addressing 
for position determination of persons or objects

Multilayered Space Model assesses the combination of 
different space representations 

important space models: topography space, 
sensor space (one per sensor type / localisation method)
different subspacing of topography wrt. mode of locomotion 
logical spaces express navigation constraints / restrictions

IndoorML is a data model and exchange format (based on 
GML) for the representation of the indoor navigation aspects

complementary to CityGML, IFC, GDF
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